Abstract:The “thermal barrier” caused by aerodynamic heating during flight of the aircraft has the characteristics of transient(short-term) high temperature. In this transient high-temperature environment, the strength of the structural material of the aircraft becomes extremely complicated due to temperature and time effects. Conventional steady-state (long-term) high-temperature mechanical properties can no longer reflect the characteristics of the material “thermal barrier” environment. In this paper, a test technique for mechanical properties of materials under aerodynamic thermal environment is proposed and systematically verified with the GH3039 alloy. Actual aero-thermal environment can be simulated, mechanical performance of the structural materials at transient high temperatures can be tested, and the real strength information in the “thermal barrier” service environment can be obtained. This technology provides a new idea and development direction for testing the high temperature mechanical properties of aircraft structural materials.