• 首页 | 期刊简介 | 编委会 | 投稿须知 | 出版道德规范 | 下载专区 | English
高温作用后砂岩蠕变试验及PSO-BP神经网络单轴蠕变长期强度预测研究
Research on sandstone creep test after high temperature and PSO-BP neural network uniaxial creep long-term strength prediction
投稿时间:2021-05-22  修订日期:2021-09-28
DOI:
中文关键词:  黄砂岩  高温作用后的单轴蠕变实验  单轴蠕变长期强度  蠕变变形  PSO-BP神经网络预测
英文关键词:Yellow sandstone  uniaxial creep experiment after high temperature  long-term uniaxial creep strength  creep deformation  PSO-BP neural network prediction
基金项目:国家自然科学基金:51674149;山东省自然科学基金:ZR2018PEE005;
作者单位邮编
梁忠豪 青岛科技大学 266000
秦楠 青岛科技大学 266061
纪沛志 青岛科技大学机电工程学院 266061
周彤彤 青岛科技大学机电工程学院 266061
葛强 青岛科技大学机电工程学院 266061
摘要点击次数: 334
全文下载次数: 0
中文摘要:
      为了研究高温作用后黄砂岩的蠕变强度及变形特征,对高温作用后的黄砂岩开展单轴蠕变实验,系统的分析了高温损伤、轴压对黄砂岩的蠕变变形特征、蠕变强度、蠕变速率的影响。利用PSO-BP神经网络算法对不同力学参数进行训练,预测高温作用后黄砂岩的单轴蠕变长期强度。研究结果发现:高温作用后黄砂岩存在蠕变应力阈值,低于阈值时仅发生稳定蠕变,高于阈值后发生不稳定蠕变;蠕变试验中试件处于低应力状态时,随着温度的增加蠕变变形程度与稳态蠕变率呈线性关系。处于高应力状态时,温度对二者影响程度增大。使用PSO-BP神经网络预测高温作用后黄砂岩蠕变长期强度,发现比传统BP神经网络模型实际吻合更好、训练速度快、预测精度高。研究成果可为地下岩体工程高温后灾变重建提供一定的技术支撑和借鉴。
英文摘要:
      In order to study the creep strength and deformation characteristics of yellow sandstone after high temperature action, uniaxial creep experiments were carried out on yellow sandstone after high temperature action, and the effects of high temperature damage and axial pressure on the creep deformation characteristics, creep strength and creep rate of yellow sandstone were systematically analyzed. The results found that: there is a creep stress threshold for yellow sandstone after high-temperature action, below which only stable creep occurs, and above which unstable creep occurs; the degree of creep deformation and steady-state creep rate are linearly related with increasing temperature when the specimens are at low stress in the creep test. In the high stress state, the degree of temperature influence on both increases. Using PSO-BP neural network to predict the long-term strength of creep in yellow sandstone after high temperature action, it was found that the actual fit was better, the training speed was faster and the prediction accuracy was higher than the traditional BP neural network model. The research results can provide some technical support and reference for the reconstruction of subsurface rock projects after high temperature catastrophic changes.
  查看/发表评论  下载PDF阅读器
关闭

版权所有:《实验力学》编辑部
您是本站第 63728162 位访问者,今日一共访问32次,当前在线人数: 0
技术支持:本系统由北京勤云科技发展有限公司设计