• 首页 | 期刊简介 | 编委会 | 投稿须知 | 出版道德规范 | 下载专区 | English
CFRP/6061-T6胶铆接头强度的工艺参数影响分析与预测
Analysis and prediction of influence of process parameters on strength of CFRP/6061-T6 adhesive riveting joint
投稿时间:2021-06-22  修订日期:2021-08-04
DOI:
中文关键词:  碳纤维增强复合材料  胶铆连接  正交试验  灰度关联分析  GA-BP神经网络
英文关键词:Carbon fiber reinforced polymer  Riveting-bonded joint  Orthogonal experiment  Gray level correlation analysis  GA-BP neural network prediction
基金项目:上海市自然基金(高强度钢-铝合金CMT焊缝热塑性变形及偏差传递机理研究). No: 20ZR1422600
作者单位邮编
郭亚涛 1.上海工程技术大学 201620
许莎 1.上海工程技术大学 201620
卞海玲 1.上海工程技术大学 201620
邢彦锋 1.上海工程技术大学 201620
陆瑶 1.上海工程技术大学 201620
摘要点击次数: 558
全文下载次数: 0
中文摘要:
      采用正交试验设计方法,研究工艺参数对碳纤维增强复合材料(Carbon Fiber Reinforced Polymer,CFRP)和铝合金(6061-T6)胶铆接头强度的影响。以胶铆接头失效载荷为目标量,以铆接压强、CFRP板厚、搭接宽度及铝板表面处理作为影响目标量的四个因素。采用灰色关联度结合主成分分析法对CFRP/6061-T6胶铆接头的四个工艺参数进行多目标分析。在此基础上,采用遗传算法优化的BP神经网络(GA-BP)方法,建立工艺参数与接头强度的预测模型。研究结果表明:四个工艺参数中,铝合金的表面处理对接头强度的影响程度最大,CFRP板厚次之,然后是搭接宽度,铆接压强对接头强度的影响最小。GA-BP神经网络模型的预测结果与试验结果接近,拟合程度高,能够对CFRP/6061-T6胶铆接头强度进行有效预测。
英文摘要:
      An orthogonal experimental design was used to study the influence of process parameters on the strength of carbon fiber reinforced polymer (CFRP) and aluminum alloy 6061-T6 riveting-bonded joints. The failure load of the rubber riveting head was taken as the target quantity, and the riveting pressure, CFRP plate thickness, lap width and aluminum plate surface treatment were taken as the four factors affecting the target quantity. a multi-objective analysis of the four process parameters of the CFRP/6061-T6 riveting-bonded joints was conducted using gray correlation combined with principal component analysis. On this basis, the BP neural network (GA-BP) optimized by genetic algorithm was used to establish the prediction model of process parameters and joint strength. The results show that the surface treatment of aluminum alloy has the greatest effect on the joint strength, followed by the thickness of CFRP plate, followed by the lap width, and the influence of riveting pressure is the least. The prediction results of GA-BP neural network model are close to the experimental results and the fitting degree is high. GA-BP neural network model can effectively predict the strength of CFRP/6061-T6 riveting-bonded joint.
  查看/发表评论  下载PDF阅读器
关闭

版权所有:《实验力学》编辑部
您是本站第 63728052 位访问者,今日一共访问1045次,当前在线人数: 0
技术支持:本系统由北京勤云科技发展有限公司设计