不同温压超临界CO2气爆喷孔冲击应力变化规律实验研究
Experimental study on variation rules of impact stress for the supercritical CO2 explosion nozzle at different temperatures and pressures
Received:January 11, 2019  Revised:February 02, 2019
DOI:10.7520/1001-4888-19-010
中文关键词:  超临界CO2气爆  爆生气体  冲击应力  喷孔
英文关键词:supercritical CO2 explosion  explosive gas  impact stress  nozzle
基金项目:国家自然科学基金资助项目 (No.51574137)
Author NameAffiliation
SUN Ke-ming* 1.School of Science, Qingdao University of Technology, Qingdao 266520, Shandong, China
2.School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China 
ZHOU Hang School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China 
XIE Meng School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China 
JI Hong-jie School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China 
CHEN Shuai School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China 
Hits: 727
Download times: 308
中文摘要:
      为研究不同温压条件下超临界CO2气爆过程中气爆管喷孔喷射的爆生气体对被爆物体产生的冲击应力变化规律,自主设计了超临界CO2气爆实验系统及数据采集装置,实验得到了在不同初始温度和压力下对称双喷孔喷射的超临界CO2气爆爆生气体冲击应力变化规律:喷孔喷出的爆生气体作用于被爆物体的冲击应力经历应力激增、应力剧减和应力减速衰减三个阶段。冲击应力时程变化曲线呈脉冲波形曲线特征,且冲击应力衰减阶段持续时间大于冲击应力激增持续时间。冲击应力随初始温度和初始压力的增大而增加,初始压力变化引起的气爆冲击应力变化比初始温度变化明显,增大超临界态CO2的初始压力提高气爆冲击应力优于提高超临界态CO2的初始温度。最后得到了冲击应力峰值Pmax与初始温度T和初始压力P的关系Pmax=ɑT+bP+C。
英文摘要:
      In order to study the variation rules of impact stress on the object from the explosive gas injected by the gas detonation tube during the supercritical CO2 explosion under different temperature and pressure conditions, we have designed the supercritical CO2 explosion experimental system and the data acquisition unit independently. The results show that the variation rules of impact stress of the explosive gas injected by the symmetric double nozzle under different initial temperatures and pressures can be obtained. The variation of impact stress on the explosive object generated by the explosive gas from nozzle undergoes the stress surge, stress drop and stress deceleration processes. The impact stress time history curve is characterized by a pulse waveform, and the duration of the impact stress deceleration process is greater than that of the stress surge process. The impact stress increases with the increase of the initial temperature and the initial pressure. The influence of the initial pressure change on the explosive impact stress is more obvious than that of the initial temperature change. Increasing the initial pressure of supercritical CO2 is better than increasing the initial temperature to increase the gas explosion impact stress. The relationship between the peak value of the impact stress Pmax and the initial temperature T and the initial pressure P can be given as Pmax=aT+bP+C.
View Full Text  Download reader
Close