尹章程,雷乂舻,宋海鹏*.基于声发射多维度时序特征的铝锂合金应力腐蚀损伤分类方法研究[J].实验力学,2024,39(5):625~636 |
基于声发射多维度时序特征的铝锂合金应力腐蚀损伤分类方法研究 |
Research on classification method of stress corrosion damage of aluminum-lithium alloy basedon multi-dimensional time series features of acoustic emission |
投稿时间:2023-12-15 修订日期:2024-05-23 |
DOI:10.7520/1001-4888-23-262 |
中文关键词: 声发射 铝锂合金 应力腐蚀 损伤分类 |
英文关键词:acoustic emission aluminum-lithium alloy stress corrosion damage classification |
基金项目:国家自然科学基金项目(11972364) |
|
摘要点击次数: 2037 |
全文下载次数: 147 |
中文摘要: |
航空合金的应力腐蚀开裂是飞机结构重要失效形式之一,本文针对铝锂合金应力腐蚀多类损伤耦合问题,结合Tsfresh库和机器学习算法提出了一种基于声发射多维度时序特征的应力腐蚀损伤分类方法;综合声发射损伤分类与电化学噪声数据,讨论了铝锂合金应力腐蚀损伤演化规律。结果显示,相较于传统特征参数,多维度时序特征参数与类型标签的相关性更高,12种机器学习算法在测试集上的平均准确率由90.26%提升至98.87%,表明以多维度时序特征进行损伤分类具有显著优势;铝锂合金应力腐蚀损伤演化过程可被分为电化学活化、裂纹萌生、裂纹扩展阶段;电化学活化阶段试件表面的缺陷经去钝化-再钝化循环逐步扩展为蚀坑,裂纹萌生阶段出现氢致开裂,裂纹扩展阶段存在滑移溶解,裂纹扩展导致试件最终失效。 |
英文摘要: |
Stress corrosion cracking (SCC) in aerospace alloys is a critical failure mode in aircraft structures. A classification method based on multidimensional time-series features of acoustic emission (AE) was employed to address the problem of multi-type damage coupling in lithium-aluminum alloys, utilizing the Tsfresh library and machine learning algorithms. By combining AE damage classification with electrochemical noise data, the study discussed the damage evolution stages of aluminum-lithium alloys under SCC. The research indicated that, compared to traditional feature parameters, multi-dimensional time series feature parameters had a higher correlation with damage type labels, and the average accuracy of 12 machine learning algorithms on the test set increased from 90.26% to 98.87%, indicating that using multi-dimensional time series features for damage classification had significant advantages. The SCC damage evolution process of aluminum-lithium alloys can be divided into three stages: electrochemical activation, crack initiation, and crack propagation. In the electrochemical activation stage, defects on the specimen surface gradually expanded into pits through de-passivation and re-passivation cycles.Hydrogen-induced cracking appeared during the crack initiation stage,slip dissolution existed during the crack expansion stage, and cracks gradually expanded until ultimate failure happened. |
查看全文 下载PDF阅读器 |
关闭 |