• 首页 | 期刊简介 | 编委会 | 投稿须知 | 出版道德规范 | 下载专区 | English
高温冷却后超高性能混凝土残余力学性能研究
Study on the residual mechanical properties of UHPC after high temperature with different cooling methods
投稿时间:2024-04-11  修订日期:2024-07-15
DOI:
中文关键词:  超高性能混凝土  高温作用  冷却方式  力学性能  残余强度
英文关键词:ultra high performance concrete  high temperature action  cooling method  mechanical property  residual strength
基金项目:国家自然科学基金资助项目(52278172);河南省粮油仓储建筑与安全重点实验室开放课题(2020KF-B06);河南省教育厅自然科学项目(24A560006)
作者单位邮编
周超锋* 河南工业大学 450001
朱重澳 河南工业大学 450001
庞瑞 河南工业大学 450001
薛建阳 西安建筑科技大学 450001
李亚东 河南工业大学 450001
摘要点击次数: 347
全文下载次数: 0
中文摘要:
      为研究不同冷却方式对高温后超高性能混凝土(UHPC)单轴受压力学性能的影响,以冷却方式、受热温度为变化参数,设计制作了45个100mm×100mm×300mm的试块进行高温后的单轴抗压试验。观察了高温后试块的表观特征、质量损失及破坏形态,分析冷却方式及受热温度对抗压强度的影响规律。结果表明:随着受热温度升高,试块表面裂纹增多,不同冷却方式下质量烧失率均增大,自然冷却时较大,浸水冷却时近似呈线性增长;抗压强度均呈现先小幅增大后减小的趋势,与常温工况相比,自然冷却、浸水冷却时最大抗压强度分别提高了18.3%和13.4%;受热温度800℃时,自然冷却、浸水冷却抗压强度分别降低至常温下的20.8%和18.8%;受热温度超过600℃时,试块表现出较好的轴向变形能力;相较于自然冷却,浸水冷却下峰值应变发展较快,但800℃时基本趋于一致,自然冷却、浸水冷却下峰值应变分别增大至常温工况下峰值应变的2.22倍、2.24倍;与自然冷却相比,浸水冷却下弹性模量相对较小,且均经历慢降、快降、慢降三个阶段。基于试验,提出了浸水冷却后的UHPC残余强度计算公式,可为建筑消防灭火后混凝土承载能力评估提供依据。
英文摘要:
      To investigate the effect of different cooling methods on the uniaxial compressive properties of ultra-high performance concrete (UHPC) after high temperature, 45 specimens with dimension of 100mm×100mm×300mm were designed and fabricated. The cooling methods and heating temperature were chosen as test variable parameters. Observe The apparent characteristics, quality loss, and failure mode were observed after different high temperatures and cooling methods. The variation law of compressive strength was analyzed. The experimental results show that as the temperature increases, the surface cracks increase. The mass loss rate increases under different cooling methods. A higher mass loss rate is occured under natural cooling and an approximately linear increase is presented under water cooling. The compressive strength shows a trend of first slightly increasing and then decreasing. Compared with the normal temperature, with the temperature increase, the maximum compressive strength increased by 18.3% and 13.4% respectively under natural cooling and water cooling. When the temperature reaches to 800℃, the compressive strength under natural cooling and water cooling decrease to 20.8% and 18.8% of compressive strength at normal temperature, respectively. When the temperature exceeds 600 ℃, the axial deformation ability of blocks are significantly enhanced. Compared with natural cooling, the peak strain under water cooling develops rapidly, but tends to be consistent at 800 ℃. The peak strain under natural cooling and water cooling increases to 2.22 times and 2.24 times the peak strain under normal temperature conditions, respectively. Compared with natural cooling, the elastic modulus under water cooling is relatively small and undergoes three stages: slow decrease, fast decrease, and slow decrease. Based on experiments, a formula for calculating the residual strength of UHPC after water cooling is proposed, which can provide a basis for evaluating the load-bearing capacity of building after fire.
  下载PDF阅读器
关闭

网站版权:《实验力学》编辑部
您是本站第 65777120 位访问者,今日一共访问955次,当前在线人数: 0
技术支持:本系统由北京勤云科技发展有限公司设计