• 首页 | 期刊简介 | 编委会 | 投稿须知 | 出版道德规范 | 下载专区 | English
叶雪辀,甘叔玮,张小虎*,黄奕勇,熊丹.绳索摆角高精度视觉测量系统设计及其在悬吊式重力补偿系统中的应用[J].实验力学,2021,36(6):735~745
绳索摆角高精度视觉测量系统设计及其在悬吊式重力补偿系统中的应用
Design of high-precision rope swing angle visual measurement system and its application in suspended gravity compensation system
投稿时间:2020-12-31  修订日期:2021-02-24
DOI:10.7520/1001-4888-20-263
中文关键词:  悬吊式重力补偿系统  摆角测量  相机位姿估计
英文关键词:suspension type gravity compensation system  swing angle measurement  camera pose estimation
基金项目:国家重点研发计划(2018YFF0300805)资助
作者单位
叶雪辀 中山大学 航空航天学院 广东广州 510006 
甘叔玮 中山大学 航空航天学院 广东广州 510006 
张小虎* 中山大学 航空航天学院 广东广州 510006 
黄奕勇 军事科学院 国防科技创新研究院 北京 150001 
熊丹 军事科学院 国防科技创新研究院 北京 150001 
摘要点击次数: 814
全文下载次数: 113
中文摘要:
      载人航天任务中,需要建设地面模拟微重力环境,用于航天员适应性训练。悬吊式重力补偿系统通过绳索悬吊受训者,利用绳索拉力平衡重力,模拟微重力环境。为保持绳索拉力与重力平衡,必须在受训者运动过程中控制绳索方向与重力方向相同,为此,需要实时高精度测量绳索在运动过程中的微小摆角,作为绳索方向控制系统的输入。本文设计实现了一种基于相机位姿估计的高精度绳索摆角实时测量系统,系统由固定于绳索下端点的智能相机和固定于绳索上端点的标志架组成。运动过程中,智能相机拍摄标志架,实时提取其合作标志并解算相机与标志架的相对位姿,进一步通过预先标定的标志架与绳索上端点、相机与绳索下端点的安装关系计算绳索上下端点的空间坐标,最终解算得到高精度的绳索摆角。实验结果表明系统能够以20Hz的测量频率得到误差在0.05°以内的绳索摆角数据。该系统结构紧凑,自主性强,可推广应用于工业控制和科研实验中的小摆角测量。
英文摘要:
      In manned space missions, it is necessary to build a ground-based simulated microgravity environment for astronaut adaptive training. The suspended gravity compensation system uses ropes to suspend trainees, balances gravity with rope tension, and simulates a microgravity environment. In order to maintain the balance between rope tension and gravity, the direction of the rope must be the same as the direction of gravity during the movement of the trainee. For this reason, it is necessary to measure the small swing angle of the rope in real time and with high accuracy as the input of the rope direction control system.This paper designs and implements a high-precision rope swing angle real-time measurement system based on monocular pose estimation. The system consists of a smart camera fixed to the lower end of the rope and a sign frame fixed to the driving (the upper end of the rope). During the movement, the smart camera shoots the marker frame, extracts its cooperation logo in real time and calculates the relative pose of the camera and the marker frame, and further calculates the rope up and down through the pre-calibrated relationship between the marker frame and the upper end of the rope, and the camera and the lower end of the rope. The space coordinates of the endpoints are finally solved to obtain a high-precision rope swing angle. The experimental results show that the system can obtain rope swing angle data with an error within 0.05° at a measuring frequency of 20Hz. The system has compact structure and strong autonomy, and can be popularized for small swing angle measurement in industrial control and scientific research experiments.
查看全文  下载PDF阅读器
关闭

版权所有:《实验力学》编辑部
您是本站第 65265758 位访问者,今日一共访问358次,当前在线人数: 0
技术支持:本系统由北京勤云科技发展有限公司设计