基于三重周期极小曲面的3D打印互穿相复合材料的力学性能
Mechanical properties of 3D printed interpenetrating phase composites based on triply periodic minimal surface
Received:September 22, 2022  Revised:November 12, 2022
DOI:10.7520/1001-4888-22-239
中文关键词:  互穿相复合材料  三重周期极小曲面  G曲面  P曲面  外壳拓扑  立体拓扑
英文关键词:interpenetrating phase composites  triply periodic minimal surface  G-surface  P-surface  sheet-networks  solid-networks
基金项目:国家自然科学基金项目(52178193);广东省自然科学基金项目(2022A1515012086);广州市基础研究计划市校(院)联合项目(202102010491)
Author NameAffiliation
HE Huiyi School of Civil Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China 
LIANG Yingjing* School of Civil Engineering, Guangzhou University, Guangzhou 510006, Guangdong, China 
Hits: 1216
Download times: 0
中文摘要:
      互穿相复合材料(Interpenetrating phase composites,IPCs)由于其各相的相互连接性,与用纤维、分散颗粒等作为增强相的传统复合材料相比,具有更好的力学性能。基于动物仿生构建的三重周期极小曲面(Triply periodic minimal surface,TPMS)超材料结构是一种规律且复杂的拓扑结构,呈现出如无应力集中、高比吸能、高比强度等优异的力学性能。随着增材制造的发展,使得制备可设计的、复杂拓扑的IPCs结构成为可能。本文通过Polyjet多材料3D打印技术制备出基于TPMS的IPCs聚合物结构,并对其力学性能进行了实验研究,该IPCs结构由增强相和基体相两相组成,其中增强相采用2种TPMS(Gyroid曲面和Schwarz P曲面,简称为G曲面和P曲面)的2种拓扑(外壳拓扑和立体拓扑)结构,增强相间的孔隙部分由较软的基质材料填充。研究结果表明,在3种增强相相对密度(25%、35%、50%)下,G曲面外壳拓扑IPCs结构相比于所研究的G曲面立体拓扑、P曲面立体拓扑和外壳拓扑的IPCs结构具有更优的力学性能和整体稳定性;由于具有高刚度、高强度以及屈服后的平缓上升平台,G曲面外壳拓扑IPCs结构可在能量吸收等方面有较大的应用前景。
英文摘要:
      Compared with conventional composites using fibers and dispersed particulates as reinforcement phase, Interpenetrating phase composites (IPCs) exhibit better mechanical properties because they are topologically interconnected. The triply periodic minimal surface (TPMS) metamaterial structure based on animal bionic construction is a regular and complex topological structure, showing excellent mechanical properties such as no stress concentration, high energy absorption capacity and high strength. With the development of additive manufacturing, it is possible to prepare designable and complex topological IPCs. In this paper, TPMS-based IPCs polymer structures were made by multi-material 3D printing with Polyjet technology, and their mechanical properties were investigated experimentally. The IPCs structure consists of two phases: reinforcing phase and matrix phase, and the reinforcing phases were structured with two TPMS(Gyroid(G) and Schwarz P(P))under two topologies(sheet-networks topology and solid-networks topology), while the pores between the reinforcing phases were filled by softer matrix materials. This study shows that the sheet-networks G IPCs have better mechanical properties and overall stability than solid-networks G IPCs, sheet-networks P IPCs and solid-networks P IPCs at the relative density of three reinforcements(25%, 35%, 50%). The sheet-networks G IPCs can be applied for energy absorption due to its high stiffness, strength, and gentle rising plateau after yielding.
View Full Text  Download reader
Close